
MODBUS Application Protocol Specification MODBUS.ORG

modbus.org http://www.modbus.org/ 1/45
8May02

Content 1 Introduction .. 2
1.1 Scope of this document .. 2
1.2 References ... 2

2 Abbreviations ... 3
3 Context... 3
4 General description .. 5

4.1 Protocol description.. 5
4.2 Data Encoding.. 7
4.3 MODBUS data model ... 7
4.4 Define MODBUS Transaction ... 9

5 Function Code Categories .. 11
5.1 Public Function Code Definition ...12

6 Function codes descripitons.. 12
6.1 01 (0x01) Read Coils ...12
6.2 02 (0x02) Read Discrete Inputs..14
6.3 03 (0x03) Read Holding Registers ...17
6.4 04 (0x04) Read Input Registers ...18
6.5 05 (0x05) Write Single Coil ..20
6.6 06 (0x06) Write Single Register ...22
6.7 15 (0x0F) Write Multiple Coils..25
6.8 16 (0x10) Write Multiple registers ..28
6.9 20 (0x14) Read File Record ...29
6.10 22 (0x16) Mask Write Register ...34
6.11 23 (0x17) Read/Write Multiple registers..............................35
6.12 43 (0x2B) Read Device Identification..................................38

7 MODBUS Exception Responses... 43

modbus.org http://www.modbus.org/ 2/45
8May02

1 Introduction

1.1 Scope of this document

MODBUS is an application layer messaging protocol, positioned at level 7 of the OSI model, that provides client/server communication
between devices connected on different types of buses or networks.
The industry’s serial de facto standard since 1979, Modbus continues to enable millions of automation devices to communicate. Today,
support for the simple and elegant structure of MODBUS continues to grow. The Internet community can access MODBUS at a reserved
system port 502 on the TCP/IP stack.

MODBUS is a request/reply protocol and offers services specified by function codes. MODBUS function codes are elements of
MODBUS request/reply PDUs. The objective of this document is to describe the function codes used within the framework of MODBUS
transactions.

1.2 References

1. RFC 791, Internet Protocol, Sep81 DARPA
2. MODBUS Protocol Reference Guide Rev J, MODICON, June 1996, doc # PI_MBUS_300

MODBUS is an application layer messaging protocol for client/server communication between devices connected on different types of
buses or networks.
It is currently implemented using:
� TCP/IP over Ethernet.
� Asynchronous serial transmission over a variety of media (wire : EIA/TIA-232-E, EIA-422, EIA/TIA-485-A; fiber, radio, etc.)
� MODBUS PLUS, a high speed token passing network.

TCP

Modbus on TCP

MODBUS APPLICATION LAYER

IP

Ethernet
Physical layer

Ethernet II /802.3
EIA/TIA-232 or

EIA/TIA-485

Master / Slave

Physical layer

MODBUS+ / HDLC

Other

Other

Figure 1: MODBUS communication stack

MODBUS Application Protocol Specification MODBUS.ORG

modbus.org http://www.modbus.org/ 3/45
8May02

2 Abbreviations

ADU Application Data Unit

HDLC High level Data Link Control

HMI Human Machine Interface

IETF Internet Engineering Task Force

I/O Input/Output

IP Internet Protocol

MAC Medium Access Control

MB MODBUS Protocol

MBAP MODBUS Application Protocol

PDU Protocol Data Unit

PLC Programmable Logic Controller

TCP Transport Control Protocol

3 Context

The MODBUS protocol allows an easy communication within all types of network architectures.

PLC PLCHMI I/ O I/ O I/ ODrive

MODBUS ON TCP/IP

Gateway Gateway Gateway

M
O

D
B

U
S

 O
N

 M
B

+

M
O

D
B

U
S

 O
N

 R
S

23
2

M
O

D
B

U
S

 O
N

 R
S

48
5

Device

HMI

PLC PLC

Drive

I/ O

I/ O

I/ O

I/ O

Device

MODBUS COMMUNICATION

Figure 2: Example of MODBUS Network Architecture

Every type of devices (PLC, HMI, Control Panel, Driver, Motion control, I/O Device…) can use MODBUS protocol to initiate a remote
operation.

MODBUS Application Protocol Specification MODBUS.ORG

modbus.org http://www.modbus.org/ 4/45
8May02

The same communication can be done as well on serial line as on an Ethernet TCP/IP networks.
Some gateway allows a communication between several types of buses or network using the MODBUS protocol.

MODBUS Application Protocol Specification MODBUS.ORG

modbus.org http://www.modbus.org/ 5/45
8May02

4 General description

4.1 Protocol description

The MODBUS protocol defined a simple protocol data unit (PDU) independent of the underlying communication layers. The mapping of
MODBUS protocol on specific buses or network can introduce some additional fields on the application data unit (ADU).

Additional address Function code Data Error check

ADU

PDU

Figure 3: General MODBUS frame

The MODBUS application data unit is built by the client that initiates a MODBUS transaction. The function indicates to the server what
kind of action to perform.
The MODBUS application protocol establishes the format of a request initiated by a client.
The function code field of a MODBUS data unit is coded in one byte. Valid codes are in the range of 1 ... 255 decimal (128 – 255
reserved for exception responses). When a message is sent from a Client to a Server device the function code field tells the server what
kind of action to perform.
Sub-function codes are added to some function codes to define multiple actions.
The data field of messages sent from a client to server devices contains additional information that the server uses to take the action
defined by the function code. This can include items like discrete and register addresses, the quantity of items to be handled, and the
count of actual data bytes in the field.
The data field may be nonexistent (of zero length) in certain kinds request, in this case the server does not require any additional
information. The function code alone specifies the action.
If no error occurs related to the MODBUS function requested in a properly received MODBUS ADU the data field of a response from a
server to a client contains the data requested. If an error related to the MODBUS function requested occurs, the field contains an
exception code that the server application can use to determine the next action to be taken.
For example a client can read the ON / OFF states of a group of discrete outputs or inputs or it can read/write the data contents of a
group of registers.
When the server responds to the client, it uses the function code field to indicate either a normal (error-free) response or that some kind
of error occurred (called an exception response). For a normal response, the server simply echoes the original function code.

Function code Data Request

Client Server

Initiate request

Perform the action
Initiate the response

Receive the response

Function code Data Response

MODBUS Application Protocol Specification MODBUS.ORG

modbus.org http://www.modbus.org/ 6/45
8May02

Figure 4: MODBUS transaction (error free)

For an exception response, the server returns a code that is equivalent to the original function code with its most significant bit set to
logic 1.

Function code Data Request

Client Server

Initiate request

Error detected in the action
Initiate an error

Receive the response

Error code Exception code

Figure 5: MODBUS transaction (exception response)

F Note: It is desirable to manage a time out in order not to indefinitely wait for an answer which will perhaps never arrive.

The size of the Modbus PDU is limited by the size constraint inherited from the first Modbus implementation on Serial Line network (max.
RS485 ADU = 256 bytes).

Therefore, MODBUS PDU for serial line communication = 256 - Server adress (1 byte) - CRC (2 bytes) = 253 bytes.

Consequently :

RS232 / RS485 ADU = 253 bytes + Server adress (1 byte) + CRC (2 bytes) = 256 bytes.

TCP MODBUS ADU = 249 bytes + MBAP (7 bytes) = 256 bytes .

The MODBUS protocol defines three PDUs. They are :

• MODBUS Request PDU, mb_req_pdu

• MODBUS Response PDU, mb_rsp_pdu

• MODBUS Exception Response PDU, mb_excep_rsp_pdu

The mb_req_pdu is defined :

mb_req_pdu = { function_code, request_data), where

function_code - [1 byte] MODBUS function code

request_data - [n bytes] This field is function code dependent and usually contains information such as

 variable references, variable counts, data offsets, sub-function codes etc.

The mb_rsp_pdu is defined :

MODBUS Application Protocol Specification MODBUS.ORG

modbus.org http://www.modbus.org/ 7/45
8May02

mb_rsp_pdu = { function_code, response_data), where

function_code - [1 byte] MODBUS function code

response_data - [n bytes] This field is function code dependent and usually contains information

 such as variable references, variable counts, data offsets, sub-function codes, etc.

The mb_excep_rsp_pdu is defined :

 mb_excep_rsp_pdu = { function_code, request_data), where

function_code - [1 byte] MODBUS function code + 0x80

exception_code - [1 byte] MODBUS Exception Code Defined in table

 below.

4.2 Data Encoding

• MODBUS uses a ‘big-Endian’ representation for addresses and data items. This means that when a numerical quantity larger than a
single byte is transmitted, the most significant byte is sent first. So for example

Register size value
16 - bits 0x1234 the first byte sent is 0x12 then 0x34

F Note: For more details, see [1] .

4.3 MODBUS data model

MODBUS bases its data model on a series of tables that have distinguishing characteristics. The four primary tables are:

Primary tables Object type Type of access Comments

 Discretes Input Single bit Read-Only This type of data can be provided by an I/O system.

Coils Single bit Read-Write This type of data can be alterable by an application program.

Input Registers 16-bit word Read-Only This type of data can be provided by an I/O system

Holding Registers 16-bit word Read-Write This type of data can be alterable by an application program.

The distinctions between inputs and outputs, and between bit-addressable and word-addressable data items, do not imply any application
behavior. It is perfectly acceptable, and very common, to regard all four tables as overlaying one another, if this is the most natural
interpretation on the target machine in question.
For each of the primary tables, the protocol allows individual selection of 65536 data items, and the operations of read or write of those
items are designed to span multiple consecutive data items up to a data size limit which is dependent on the transaction function code.
It’s obvious that all the data handled via MODBUS (bits, registers) must be located in device application memory. But physical address in
memory should not be confused with data reference. The only requirement is to link data reference with physical address.
MODBUS logical reference number, which are used in MODBUS functions, are unsigned integer indices starting at zero.

MODBUS Application Protocol Specification MODBUS.ORG

modbus.org http://www.modbus.org/ 8/45
8May02

• Implementation examples of MODBUS model
The examples below show two ways of organizing the data in device. There are different organizations possible, all are not described in
this document. Each device can have its own organization of the data according to its application

Example 1 : Device having 4 separate blocks
The example below shows data organization in a device having digital and analog, inputs and outputs. Each block is separate from each
other, because data from different block have no correlation. Each block is thus accessible with different MODBUS functions.

Input Discrete

MODBUS access

Device application memory

MODBUS SERVER DEVICE

MODBUS RequestCoils

Input Registers

Holding
Registers

Figure 6 MODBUS Data Model with separate block

Example 2: Device having only 1 block
In this example, the device have only 1 data block. A same data can be reached via several MODBUS functions, either via a 16 bits
access or via an access bit.

Device application memory

MODBUS SERVER DEVICE

MODBUS Request

Input Discrete

MODBUS access

Coils

Input Registers

Holding
Registers

R
W

R

W

Figure 7 MODBUS Data Model with only 1 block

MODBUS Application Protocol Specification MODBUS.ORG

modbus.org http://www.modbus.org/ 9/45
8May02

4.4 Define MODBUS Transaction

The following state diagram describes the generic processing of a MODBUS transaction in server side.

Validate function
code

Validate data
value

ExceptionCode_3

Wait for a MB
indication

ExceptionCode_2

ExeptionCode_1

Send Modbus
Exception
Response

ExceptionCode_4_5_6

Execute MB
function

Send Modbus
Response

Validate data
Address

ExceptionCode_3

ExceptionCode_2

ExeptionCode_1

ExceptionCode_4_5_6

[Invalid]

[Invalid]

[Invalid]

[valid]

[Invalid]

[Valid]

[valid]

[Valid]

[Receive MB indication]

Figure 8 MODBUS Transaction state diagram

Once the request has been processed by a server, a MODBUS response using the adequate MODBUS server
transaction is built.
Depending on the result of the processing two types of response can be built :
§ A positive MODBUS response :

MODBUS Application Protocol Specification MODBUS.ORG

modbus.org http://www.modbus.org/ 10/45
8May02

§ the response function code = the request function code

§ A MODBUS Exception response (see chapter 6.14):
§ the objective is to provide to the client relevant information concerning the error detected during the

processing ;
§ the response function code = the request function code + 0x80 ;
§ an exception code is provided to indicate the reason of the error.

MODBUS Application Protocol Specification MODBUS.ORG

modbus.org http://www.modbus.org/ 11/45
8May02

5 Function Code Categories

There are three categories of MODBUS Functions codes. They are :

Public Function Codes

• Are well defined function codes ,

• guaranteed to be unique,

• validated by the modbus.org community,

• publically documented

• have available conformance test,

• are documented in the MB IETF RFC,

• includes both defined public assigned function codes as well as unassigned function codes reserved for future use.

User-Defined Function Codes

• there is a defined two ranges of user-defined function codes, ie 65 to 72 and from 100 to 110 decimal.

• user can select and implement a function code without any approval from modbus.org

• there is no guarantee that the use of the selected function code will be unique

• if the user wants to re-position the functionality as a public function code, he must initiate an RFC to introduce the change into
the public category and to have a new public function code assigned.

Reserved Function Codes

• Function Codes currently used by some companies for legacy products and that are not available for public use.

 User Defined Function codes

1

65

100
110

72
 User Defined Function codes

PUBLIC function codes

PUBLIC function codes

PUBLIC function codes

127

Figure 9 MODBUS Function Code Categories

MODBUS Application Protocol Specification MODBUS.ORG

modbus.org http://www.modbus.org/ 12/45
8May02

5.1 Public Function Code Definition

Function Codes

code Sub code (hex) Page

Physical Discrete Inputs Read Input Discrete 02 02 11

Read Coils 01 01 10

Write Single Coil 05 05 16

Write Multiple Coils 15 0F 37

Bit access
Internal Bits

 Or
 Physical coils

Physical Input Registers Read Input Register 04 04 14

Read Multiple Registers 03 03 13

Write Single Register 06 06 17

Write Multiple Registers 16 10 39

Read/Write Multiple Registers 23 17 47

Mask Write Register 22 16 46

16 bits
access

Internal Registers
 Or

Physical Output
Registers

Read File record 20 6 14 42

Data
Access

File record access Write File record 21 6 15 44

Encapsulated Interface
 Read Device Identification 43 14 2B

6 Function codes descripitons

6.1 01 (0x01) Read Coils

This function code is used to read from 1 to 2000 contiguous status of coils in a remote device. The Request PDU specifies the starting
address, ie the address of the first coil specified, and the number of coils. Coils are addressed starting at zero. Therefore coils 1-16 are
addressed as 0-15.
The coils in the response message are packed as one coil per bit of the data field. Status is indicated as 1= ON and 0= OFF. The LSB of
the first data byte contains the output addressed in the query. The other coils follow toward the high order end of this byte, and from low
order to high order in subsequent bytes.
If the returned output quantity is not a multiple of eight, the remaining bits in the final data byte will be padded with zeros (toward the high
order end of the byte). The Byte Count field specifies the quantity of complete bytes of data.

Request PDU
Function code 1 Byte 0x01

Starting Address 2 Bytes 0x0000 to 0xFFFF

Quantity of coils 2 Bytes 1 to 2000 (0x7D0)

Response PDU
Function code 1 Byte 0x01

MODBUS Application Protocol Specification MODBUS.ORG

modbus.org http://www.modbus.org/ 13/45
8May02

Byte count 1 Byte N*

Coil Status n Byte n = N or N+1

*N = Quantity of Outputs / 8, if the remainder is different of 0 ⇒ N = N+1

Error
Function code 1 Byte Function code + 0x80

Exception code 1 Byte 01 or 02 or 03 or 04

Here is an example of a request to read discrete outputs 20–38:
Request Response

Field Name (Hex) Field Name (Hex)

Function 01 Function 01

Starting Address Hi 00 Byte Count 03

Starting Address Lo 13 Outputs status 27-20 CD

Quantity of Outputs Hi 00 Outputs status 35-28 6B

Quantity of Outputs Lo 13 Outputs status 38-36 05

The status of outputs 27–20 is shown as the byte value CD hex, or binary 1100 1101. Output 27 is the MSB of this byte, and output 20 is
the LSB.
By convention, bits within a byte are shown with the MSB to the left, and the LSB to the right. Thus the outputs in the first byte are ‘27
through 20’, from left to right. The next byte has outputs ‘35 through 28’, left to right. As the bits are transmitted serially, they flow from
LSB to MSB: 20 . . . 27, 28 . . . 35, and so on.
In the last data byte, the status of outputs 38-36 is shown as the byte value 05 hex, or binary 0000 0101. Output 38 is in the sixth bit
position from the left, and output 36 is the LSB of this byte. The five remaining high order bits are zero filled.

F Note: The five remaining bits (toward the high order end) are zero filled.

MODBUS Application Protocol Specification MODBUS.ORG

modbus.org http://www.modbus.org/ 14/45
8May02

MB Server Sends mb_exception_rsp EXIT

MB Server receives mb_req_pdu

ExceptionCode = 01
YES

NO

NO

ExceptionCode = 02
YES

NO

ExceptionCode = 03
YES

ENTRY

ReadDiscreteOutputs == OK

MB Server Sends mb_rsp

NO

YES

0x0001 ≤ Quantity of Outputs ≤ 0x07D0

Function code
supported

Starting Address == OK
AND

Starting Address + Quantity of Outputs == OK

ExceptionCode = 04

Request Processing

Figure 10: Read Coils state diagram

6.2 02 (0x02) Read Discrete Inputs

This function code is used to read from 1 to 2000 contiguous status of discrete inputs in a remote device. The Request PDU specifies the
starting address, ie the address of the first input specified, and the number of inputs. Inputs are addressed starting at zero. Therefore
inputs 1-16 are addressed as 0-15.
The discrete inputs in the response message are packed as one input per bit of the data field. Status is indicated as 1= ON; 0= OFF. The
LSB of the first data byte contains the input addressed in the query. The other inputs follow toward the high order end of this byte, and
from low order to high order in subsequent bytes.
If the returned input quantity is not a multiple of eight, the remaining bits in the final data byte will be padded with zeros (toward the high
order end of the byte). The Byte Count field specifies the quantity of complete bytes of data.

Request PDU

Function code 1 Byte 0x02

Starting Address 2 Bytes 0x0000 to 0xFFFF

Quantity of Inputs 2 Bytes 1 to 2000 (0x7D0)

MODBUS Application Protocol Specification MODBUS.ORG

modbus.org http://www.modbus.org/ 15/45
8May02

Response PDU

Function code 1 Byte 0x02

Byte count 1 Byte N*

Input Status N* x 1 Byte

*N = Quantity of Inputs / 8 if the remainder is different of 0 ⇒ N = N+1

Error

Error code 1 Byte 0x82

Exception code 1 Byte 01 or 02 or 03 or 04

Here is an example of a request to read discrete inputs 197 – 218:
Request Response

Field Name (Hex) Field Name (Hex)

Function 02 Function 02

Starting Address Hi 00 Byte Count 03

Starting Address Lo C4 Inputs Status 204-197 AC

Quantity of Inputs Hi 00 Inputs Status 212-205 DB

Quantity of Inputs Lo 16 Inputs Status 218-213 35

The status of discrete inputs 204–197 is shown as the byte value AC hex, or binary 1010 1100. Input 204 is the MSB of this byte, and
input 197 is the LSB.
The status of discrete inputs 218–213 is shown as the byte value 35 hex, or binary 0011 0101. Input 218 is in the third bit position from
the left, and input 213 is the LSB.

F Note: The two remaining bits (toward the high order end) are zero filled.

MODBUS Application Protocol Specification MODBUS.ORG

modbus.org http://www.modbus.org/ 16/45
8May02

MB Server Sends mb_exception_rsp EXIT

MB Server receives mb_req_pdu

ExceptionCode = 01
YES

NO

NO

ExceptionCode = 02
YES

NO

ExceptionCode = 03
YES

ENTRY

ReadDiscreteInputs == OK

MB Server Sends mb_rsp

NO

YES

0x0001 ≤ Quantity of Inputs ≤ 0x07D0

Function code
supported

Starting Address == OK
AND

Starting Address + Quantity of Inputs == OK

ExceptionCode = 04

Request Processing

Figure 11: Read Discrete Inputs state diagram

MODBUS Application Protocol Specification MODBUS.ORG

modbus.org http://www.modbus.org/ 17/45
8May02

6.3 03 (0x03) Read Holding Registers

This function code is used to read the contents of a contiguous block of holding registers in a remote device. The Request PDU specifies
the starting register address and the number of registers. Registers are addressed starting at zero. Therefore registers 1-16 are
addressed as 0-15.
The register data in the response message are packed as two bytes per register, with the binary contents right justified within each byte.
For each register, the first byte contains the high order bits and the second contains the low order bits.

Request
Function code 1 Byte 0x03

Starting Address 2 Bytes 0x0000 to 0xFFFF

Quantity of Registers 2 Bytes 1 to 125 (0x7D)

Response
Function code 1 Byte 0x03

Byte count 1 Byte 2 x N*

Register value N* x 2 Bytes

*N = Quantity of Registers

Error
Error code 1 Byte 0x83

Exception code 1 Byte 01 or 02 or 03 or 04

Here is an example of a request to read registers 108 – 110:
Request Response

Field Name (Hex) Field Name (Hex)

Function 03 Function 03

Starting Address Hi 00 Byte Count 06

Starting Address Lo 6B Register value Hi (108) 02

No. of Registers Hi 00 Register value Lo (108) 2B

No. of Registers Lo 03 Register value Hi (109) 00

Register value Lo (109) 00

Register value Hi (110) 00

Register value Lo (110) 64

The contents of register 108 are shown as the two byte values of 02 2B hex, or 555 decimal. The contents of registers 109–110 are 00 00
and 00 64 hex, or 0 and 100 decimal, respectively.

MODBUS Application Protocol Specification MODBUS.ORG

modbus.org http://www.modbus.org/ 18/45
8May02

MB Server Sends mb_exception_rsp EXIT

MB Server receives mb_req_pdu

ExceptionCode = 01
YES

NO

NO

ExceptionCode = 02
YES

NO

ExceptionCode = 03
YES

ENTRY

ReadMultipleRegisters == OK

MB Server Sends mb_rsp

NO

YES

0x0001 ≤ Quantity of Registers ≤ 0x007D

Function code
supported

Starting Address == OK
AND

Starting Address + Quantity of Registers == OK

ExceptionCode = 04

Request Processing

Figure 12: Read Holding Registers state diagram

6.4 04 (0x04) Read Input Registers

This function code is used to read from 1 to approx. 125 contiguous input registers in a remote device. The Request PDU specifies the
starting register address and the number of registers. Registers are addressed starting at zero. Therefore input registers 1-16 are
addressed as 0-15.
The register data in the response message are packed as two bytes per register, with the binary contents right justified within each byte.
For each register, the first byte contains the high order bits and the second contains the low order bits.

Request
Function code 1 Byte 0x04

Starting Address 2 Bytes 0x0000 to 0xFFFF

Quantity of Input Registers 2 Bytes 0x0001 to 0x007D

Response
Function code 1 Byte 0x04

Byte count 1 Byte 2 x N*

Input Registers N* x 2 Bytes

*N = Quantity of Input Registers

MODBUS Application Protocol Specification MODBUS.ORG

modbus.org http://www.modbus.org/ 19/45
8May02

Error
Error code 1 Byte 0x84

Exception code 1 Byte 01 or 02 or 03 or 04

MODBUS Application Protocol Specification MODBUS.ORG

modbus.org http://www.modbus.org/ 20/45
8May02

Here is an example of a request to read input register 9:
Request Response

Field Name (Hex) Field Name (Hex)

Function 04 Function 04

Starting Address Hi 00 Byte Count 02

Starting Address Lo 08 Input Reg. 9 Hi 00

Quantity of Input Reg. Hi 00 Input Reg. 9 Lo 0A

Quantity of Input Reg. Lo 01

The contents of input register 9 are shown as the two byte values of 00 0A hex, or 10 decimal.

MB Server Sends mb_exception_rsp EXIT

MB Server receives mb_req_pdu

ExceptionCode = 01
YES

NO

NO

ExceptionCode = 02
YES

NO

ExceptionCode = 03
YES

ENTRY

ReadInputRegisters == OK

MB Server Sends mb_rsp

NO

YES

0x0001 ≤ Quantity of Registers ≤ 0x007D

Function code
supported

Starting Address == OK
AND

Starting Address + Quantity of Registers == OK

ExceptionCode = 04

Request Processing

Figure 13: Read Input Registers state diagram

6.5 05 (0x05) Write Single Coil

This function code is used to write a single output to either ON or OFF in a remote device.

MODBUS Application Protocol Specification MODBUS.ORG

modbus.org http://www.modbus.org/ 21/45
8May02

The requested ON/OFF state is specified by a constant in the request data field. A value of FF 00 hex requests the output to be ON. A
value of 00 00 requests it to be OFF. All other values are illegal and will not affect the output.
The Request PDU specifies the address of the coil to be forced. Coils are addressed starting at zero. Therefore coil 1 is addressed as 0.
The requested ON/OFF state is specified by a constant in the Coil Value field. A value of 0XFF00 requests the coil to be ON. A value of
0X0000 requests the coil to be off. All other values are illegal and will not affect the coil.

The normal response is an echo of the request, returned after the coil state has been written.

Request
Function code 1 Byte 0x05

Output Address 2 Bytes 0x0000 to 0xFFFF

Output Value 2 Bytes 0x0000 or 0xFF00

Response
Function code 1 Byte 0x05

Output Address 2 Bytes 0x0000 to 0xFFFF

Output Value 2 Bytes 0x0000 or 0xFF00

Error
Error code 1 Byte 0x85

Exception code 1 Byte 01 or 02 or 03 or 04

Here is an example of a request to write Coil 173 ON:
Request Response

Field Name (Hex) Field Name (Hex)

Function 05 Function 05

Output Address Hi 00 Output Address Hi 00

Output Address Lo AC Output Address Lo AC

Output Value Hi FF Output Value Hi FF

Output Value Lo 00 Output Value Lo 00

MODBUS Application Protocol Specification MODBUS.ORG

modbus.org http://www.modbus.org/ 22/45
8May02

MB Server Sends mb_exception_rsp EXIT

ExceptionCode = 04

MB Server receives mb_req_pdu

ExceptionCode = 01
YES

NO

NO

ExceptionCode = 02

YES

NO

ExceptionCode = 03
YES

ENTRY

WriteSingleOutput == OK

MB Server Sends mb_rsp

NO

YES

Output Value == 0x0000
OR 0xFF00

Function code
supported

Output Address == OK

Request Processing

Figure 14: Write Single Output state diagram

6.6 06 (0x06) Write Single Register

This function code is used to write a single holding register in a remote device.
The Request PDU specifies the address of the register to be written. Registers are addressed starting at zero. Therefore register 1 is
addressed as 0.
The normal response is an echo of the request, returned after the register contents have been written.

Request
Function code 1 Byte 0x06

Register Address 2 Bytes 0x0000 to 0xFFFF

Register Value 2 Bytes 0x0000 or 0xFFFF

Response
Function code 1 Byte 0x06

Register Address 2 Bytes 0x0000 to 0xFFFF

Register Value 2 Bytes 0x0000 or 0xFFFF

Error
Error code 1 Byte 0x86

Exception code 1 Byte 01 or 02 or 03 or 04

MODBUS Application Protocol Specification MODBUS.ORG

modbus.org http://www.modbus.org/ 23/45
8May02

MODBUS Application Protocol Specification MODBUS.ORG

modbus.org http://www.modbus.org/ 24/45
8May02

Here is an example of a request to write register 2 to 00 03 hex:
Request Response

Field Name (Hex) Field Name (Hex)

Function 06 Function 06

Register Address Hi 00 Register Address Hi 00

Register Address Lo 01 Register Address Lo 01

Register Value Hi 00 Register Value Hi 00

Register Value Lo 03 Register Value Lo 03

MB Server Sends mb_exception_rsp EXIT

ExceptionCode = 04

MB Server receives mb_req_pdu

ExceptionCode = 01
YES

NO

NO

ExceptionCode = 02

YES

NO

ExceptionCode = 03
YES

ENTRY

WriteSingleRegister == OK

MB Server Sends mb_rsp

NO

YES

0x0000 ≤ Register Value ≤ 0xFFFF

Function code
supported

Register Address == OK

Request Processing

Figure 15: Write Single Register state diagram

MODBUS Application Protocol Specification MODBUS.ORG

modbus.org http://www.modbus.org/ 25/45
8May02

6.7 15 (0x0F) Write Multiple Coils

This function code is used to force each coil in a sequence of coils to either ON or OFF in a remote device. The Request PDU specifies
the coil references to be forced. Coils are addressed starting at zero. Therefore coil 1 is addressed as 0.
The requested ON/OFF states are specified by contents of the request data field. A logical '1' in a bit position of the field requests the
corresponding output to be ON. A logical '0' requests it to be OFF.
The normal response returns the function code, starting address, and quantity of coils forced.

Request PDU
Function code 1 Byte 0x0F

Starting Address 2 Bytes 0x0000 to 0xFFFF

Quantity of Outputs 2 Bytes 0x0001 to 0x07B0

Byte Count 1 Byte N*

Outputs Value N* x 1 Byte

*N = Quantity of Outputs / 8, if the remainder is different of 0 ⇒ N = N+1

Response PDU
Function code 1 Byte 0x0F

Starting Address 2 Bytes 0x0000 to 0xFFFF

Quantity of Outputs 2 Bytes 0x0001 to 0x07B0

Error
Error code 1 Byte 0x8F

Exception code 1 Byte 01 or 02 or 03 or 04

MODBUS Application Protocol Specification MODBUS.ORG

modbus.org http://www.modbus.org/ 26/45
8May02

Here is an example of a request to write a series of 10 coils starting at coil 20:
The request data contents are two bytes: CD 01 hex (1100 1101 0000 0001 binary). The binary bits correspond to the outputs in the
following way:

Bit: 1 1 0 0 1 1 0 1 0 0 0 0 0 0 0 1

Output: 27 26 25 24 23 22 21 20 – – – – – – 29 28
The first byte transmitted (CD hex) addresses outputs 27-20, with the least significant bit addressing the lowest output (20) in this set.
The next byte transmitted (01 hex) addresses outputs 29-28, with the least significant bit addressing the lowest output (28) in this set.
Unused bits in the last data byte should be zero–filled.

Request Response

Field Name (Hex) Field Name (Hex)

Function 0F Function 0F

Starting Address Hi 00 Starting Address Hi 00

Starting Address Lo 13 Starting Address Lo 13

Quantity of Outputs Hi 00 Quantity of Outputs Hi 00

Quantity of Outputs Lo 0A Quantity of Outputs Lo 0A

Byte Count 02

Outputs Value Hi CD

Outputs Value Lo 01

MB Server Sends mb_exception_rsp EXIT

MB Server receives mb_req_pdu

ExceptionCode = 01
YES

NO

NO

ExceptionCode = 02
YES

NO

ExceptionCode = 03
YES

ENTRY

WriteMultipleOutputs == OK

MB Server Sends mb_rsp

NO

YES

0x0001 ≤ Quantity of Outputs ≤ 0x07B0
AND

Byte Count = N*

Function code
supported

Starting Address == OK
AND

Starting Address + Quantity of Outputs == OK

ExceptionCode = 04

*N = Quantity of Outputs / 8, if the
remainder is different of 0 ⇒ N = N+1

Request Processing

MODBUS Application Protocol Specification MODBUS.ORG

modbus.org http://www.modbus.org/ 27/45
8May02

Figure 16: Write Multiple Outputs state diagram

MODBUS Application Protocol Specification MODBUS.ORG

modbus.org http://www.modbus.org/ 28/45
8May02

6.8 16 (0x10) Write Multiple registers

This function code is used to write a block of contiguous registers (1 to approx. 120 registers) in a remote device.
The requested written values are specified in the request data field. Data is packed as two bytes per register.
The normal response returns the function code, starting address, and quantity of registers written.

Request PDU
Function code 1 Byte 0x10

Starting Address 2 Bytes 0x0000 to 0xFFFF

Quantity of Registers 2 Bytes 0x0001 to 0x0078

Byte Count 1 Byte 2 x N*

Registers Value N* x 2 Bytes value

*N = Quantity of Registers

Response PDU
Function code 1 Byte 0x10

Starting Address 2 Bytes 0x0000 to 0xFFFF

Quantity of Registers 2 Bytes 1 to 123 (0x7B)

Error

Error code 1 Byte 0x90

Exception code 1 Byte 01 or 02 or 03 or 04

Here is an example of a request to write two registers starting at 2 to 00 0A and 01 02 hex:
Request Response

Field Name (Hex) Field Name (Hex)

Function 10 Function 10

Starting Address Hi 00 Starting Address Hi 00

Starting Address Lo 01 Starting Address Lo 01

Quantity of Registers Hi 00 Quantity of Registers Hi 00

Quantity of Registers Lo 02 Quantity of Registers Lo 02

Byte Count 04

Registers Value Hi 00

Registers Value Lo 0A

Registers Value Hi 01

Registers Value Lo 02

MODBUS Application Protocol Specification MODBUS.ORG

modbus.org http://www.modbus.org/ 29/45
8May02

MB Server Sends mb_exception_rsp EXIT

MB Server receives mb_req_pdu

ExceptionCode = 01
YES

NO

NO

ExceptionCode = 02
YES

NO

ExceptionCode = 03
YES

ENTRY

WriteMultipleRegisters == OK

MB Server Sends mb_rsp

NO

YES

0x0001 ≤ Quantity of Registers ≤ 0x007B
AND

Byte Count == Quantity of Registers x 2

Function code
supported

Starting Address == OK
AND

Starting Address + Quantity of Registers == OK

ExceptionCode = 04

Request Processing

Figure 17: Write Multiple Registers state diagram

6.9 20 (0x14) Read File Record

This function code is used to perform a file record read. All Request Data Lengths are provided in terms of number of bytes and all
Record Lengths are provided in terms of registers.
A file is an organization of records. Each file contains 10000 records, addressed 0000 to 9999 decimal or 0X0000 to 0X270F. For
example, record 12 is addressed as 12.
The function can read multiple groups of references. The groups can be separating (non-contiguous), but the references within each
group must be sequential.
Each group is defined in a separate ‘sub-request’ field that contains 7 bytes:

The reference type: 1 byte (must be specified as 6)
The File number: 2 bytes
The starting record number within the file: 2 bytes
The length of the record to be read: 2 bytes.

MODBUS Application Protocol Specification MODBUS.ORG

modbus.org http://www.modbus.org/ 30/45
8May02

The quantity of registers to be read, combined with all other fields in the expected response, must not exceed the allowable length of
MODBUS messages: 256 bytes.

The normal response is a series of ‘sub-responses’, one for each ‘sub-request’. The byte count field is the total combined count of bytes
in all ‘sub-responses’. In addition, each ‘sub-response’ contains a field that shows its own byte count.

Request PDU
Function code 1 Byte 0x14

Byte Count 1 Byte 0x07 to 0xF5 bytes

Sub-Req. x, Reference Type 1 Byte 06

Sub-Req. x, File Number 2 Bytes 0x0000 to 0xFFFF

Sub-Req. x, Record Number 2 Bytes 0x0000 to 0x270F

Sub-Req. x, Register Length 2 Bytes N

Sub-Req. x+1, ...

Response PDU
Function code 1 Byte 0x14

Resp. data Length 1 Byte 0x07 to 0xF5

Sub-Req. x, File Resp. length 1 Byte 0x07 to 0xF5

Sub-Req. x, Reference Type 1 Byte 6

Sub-Req. x, Record Data N x 2 Bytes

Sub-Req. x+1, ...

Error
Error code 1 Byte 0x94

Exception code 1 Byte 01 or 02 or 03 or 04 or 08

Here is an example of a request to read two groups of references from remote device:
§ Group 1 consists of two registers from file 4, starting at register 1 (address 0001).
§ Group 2 consists of two registers from file 3, starting at register 9 (address 0009).

Request Response

Field Name (Hex) Field Name (Hex)

Function 14 Function 14

Byte Count 0C Resp. Data length 0E

Sub-Req. 1, Ref. Type 06 Sub-Req. 1, File resp. length 05

Sub-Req. 1, File Number Hi 00 Sub-Req. 1, Ref. Type 06

Sub-Req. 1, File Number Lo 04 Sub-Req. 1, Record. Data Hi 0D

Sub-Req. 1, Record number Hi 00 Sub-Req. 1, Record. Data Lo FE

Sub-Req. 1, Record number Lo 01 Sub-Req. 1, Record. Data Hi 00

Sub-Req. 1, Record Length Hi 00 Sub-Req. 1, Record. Data Lo 20

Sub-Req. 1, Record Length Lo 02 Sub-Req. 2, File resp. length 05

Sub-Req. 2, Ref. Type 06 Sub-Req. 2, Ref. Type 06

Sub-Req. 2, File Number Hi 00 Sub-Req. 2, Record. Data Hi 33

Sub-Req. 2, File Number Lo 03 Sub-Req. 2, Record. Data Lo CD

Sub-Req. 2, Record number Hi 00 Sub-Req. 2, Record. Data Hi 00

Sub-Req. 2, Record number Lo 09 Sub-Req. 2, Record. Data Lo 40

MODBUS Application Protocol Specification MODBUS.ORG

modbus.org http://www.modbus.org/ 31/45
8May02

Sub-Req. 2, Record Length Hi 00

Sub-Req. 2, Record Length Lo 02

MB Server Sends mb_exception_rsp EXIT

MB Server receives mb_req_pdu

ExceptionCode = 01
YES

NO

NO

ExceptionCode = 02
YES

NO

ExceptionCode = 03

YES

ENTRY

ReadGeneralReference == OK

MB Server Sends mb_rsp

NO

YES

0x07 ≤ Byte Count ≤ 0xF5

Function code
supported

Reference Type == OK
AND

File Number == OK
AND

Starting Address == OK
AND

Starting Address + Register Count == OK

ExceptionCode = 04

Request Processing

For each Sub-Req

Figure 18: Read File Record state diagram

6.9.1 21 (0x15) Write File Record

This function code is used to perform a file record write. All Request Data Lengths are provided in terms of number of bytes and all
Record Lengths are provided in terms of the number of 16-bit words.
A file is an organization of records. Each file contains 10000 records, addressed 0000 to 9999 decimal or 0X0000 to 0X270F. For
example, record 12 is addressed as 12.
The function can write multiple groups of references. The groups can be separate, ie non–contiguous, but the references within each
group must be sequential.
Each group is defined in a separate ‘sub-request’ field that contains 7 bytes plus the data:

The reference type: 1 byte (must be specified as 6)
The file number: 2 bytes
The starting record number within the file: 2 bytes
The length of the record to be written: 2 bytes

MODBUS Application Protocol Specification MODBUS.ORG

modbus.org http://www.modbus.org/ 32/45
8May02

The data to be written: 2 bytes per register.

The quantity of registers to be written, combined with all other fields in the query, must not exceed the allowable length of MODBUS
messages: 256 bytes.

The normal response is an echo of the request.

Request PDU
Function code 1 Byte 0x15

Request data length 1 Byte 0x07 to 0xF5

Sub-Req. x, Reference Type 1 Byte 06

Sub-Req. x, File Number 2 Bytes 0x0000 to 0xFFFF

Sub-Req. x, Record Number 2 Bytes 0x0000 to 0x270F

Sub-Req. x, Record length 2 Bytes N

Sub-Req. x, Record data N x 2 Bytes

Sub-Req. x+1, ...

Response PDU

Function code 1 Byte 0x15

Response Data length 1 Byte

Sub-Req. x, Reference Type 1 Byte 06

Sub-Req. x, File Number 2 Bytes 0x0000 to 0xFFFFF

Sub-Req. x, Record number 2 Bytes 0x0000 to 0xFFFFF

Sub-Req. x, Record length 2 Bytes 0x0000 to 0xFFFFF N

Sub-Req. x, Record Data N x 2 Bytes

Sub-Req. x+1, ...

Error

Error code 1 Byte 0x95

Exception code 1 Byte 01 or 02 or 03 or 04 or 08

Here is an example of a request to write one group of references into remote device:
� The group consists of three registers in file 4, starting at register 7 (address 0007).

Request Response

Field Name (Hex) Field Name (Hex)

Function 15 Function 15

Request Data length 0D Request Data length 0D

Sub-Req. 1, Ref. Type 06 Sub-Req. 1, Ref. Type 06

Sub-Req. 1, File Number Hi 00 Sub-Req. 1, File Number Hi 00

Sub-Req. 1, File Number Lo 04 Sub-Req. 1, File Number Lo 04

Sub-Req. 1, Record number Hi 00 Sub-Req. 1, Record number Hi 00

Sub-Req. 1, Record number Lo 07 Sub-Req. 1, Record number Lo 07

MODBUS Application Protocol Specification MODBUS.ORG

modbus.org http://www.modbus.org/ 33/45
8May02

Sub-Req. 1, Record length Hi 00 Sub-Req. 1, Record length Hi 00

Sub-Req. 1, Record length Lo 03 Sub-Req. 1, Record length Lo 03

Sub-Req. 1, Record Data Hi 06 Sub-Req. 1, Record Data Hi 06

Sub-Req. 1, Record Data Lo AF Sub-Req. 1, Record Data Lo AF

Sub-Req. 1, Record Data Hi 04 Sub-Req. 1, Record Data Hi 04

Sub-Req. 1, Record Data Lo BE Sub-Req. 1, Record Data Lo BE

Sub-Req. 1, Record Data Hi 10 Sub-Req. 1, Record Data Hi 10

Sub-Req. 1, Reg. Data Lo 0D Sub-Req. 1, Reg. Data Lo 0D

MB Server Sends mb_exception_rsp EXIT

MB Server receives mb_req_pdu

ExceptionCode = 01
YES

NO

NO

ExceptionCode = 02
YES

NO

ExceptionCode = 03

YES

ENTRY

WriteGeneralReference == OK

MB Server Sends mb_rsp

NO

YES

0x07 ≤ Byte Count ≤ 0xF5

Function code
supported

Reference Type == OK
AND

File Number == OK
AND

Starting Address == OK
AND

Starting Address + Register Count == OK

ExceptionCode = 04

Request Processing

For each Sub-Req

Figure 19: Write File Record state diagram

MODBUS Application Protocol Specification MODBUS.ORG

modbus.org http://www.modbus.org/ 34/45
8May02

6.10 22 (0x16) Mask Write Register

This function code is used to modify the contents of a specified holding register using a combination of an AND mask, an OR mask, and
the register's current contents. The function can be used to set or clear individual bits in the register.
The request specifies the holding register to be written, the data to be used as the AND mask, and the data to be used as the OR mask.
Registers are addressed starting at zero. Therefore registers 1-16 are addressed as 0-15.
The function’s algorithm is:
Result = (Current Contents AND And_Mask) OR (Or_Mask AND And_Mask)
For example:

Hex Binary
Current Contents = 12 0001 0010
And_Mask = F2 1111 0010
Or_Mask = 25 0010 0101
And_Mask = 0D 0000 1101

Result = 17 0001 0111

F Note:

� That if the Or_Mask value is zero, the result is simply the logical ANDing of the current contents and And_Mask. If the And_Mask value is zero, the
result is equal to the Or_Mask value.

� The contents of the register can be read with the Read Holding Registers function (function code 03). They could, however, be changed subsequently as
the controller scans its user logic program.

The normal response is an echo of the request. The response is returned after the register has been written.

Request PDU
Function code 1 Byte 0x16

Reference Address 2 Bytes 0x0000 to 0xFFFF

And_Mask 2 Bytes 0x0000 to 0xFFFF

Or_Mask 2 Bytes 0x0000 to 0xFFFF

Response PDU
Function code 1 Byte 0x16

Reference Address 2 Bytes 0x0000 to 0xFFFF

And_Mask 2 Bytes 0x0000 to 0xFFFF

Or_Mask 2 Bytes 0x0000 to 0xFFFF

Error
Error code 1 Byte 0x96

Exception code 1 Byte 01 or 02 or 03 or 04

Here is an example of a Mask Write to register 5 in remote device, using the above mask values.
Request Response

Field Name (Hex) Field Name (Hex)

Function 16 Function 16

Reference address Hi 00 Reference address Hi 00

MODBUS Application Protocol Specification MODBUS.ORG

modbus.org http://www.modbus.org/ 35/45
8May02

Reference address Lo 04 Reference address Lo 04

And_Mask Hi 00 And_Mask Hi 00

And_Mask Lo F2 And_Mask Lo F2

Or_Mask Hi 00 Or_Mask Hi 00

Or_Mask Lo 25 Or_Mask Lo 25

MB Server Sends mb_exception_rsp EXIT

MB Server receives mb_req_pdu

ExceptionCode = 01
YES

NO

NO
ExceptionCode = 02

YES

NO

ExceptionCode = 03

YES

ENTRY

MaskWriteRegister == OK

MB Server Sends mb_rsp

NO

YES

Function code
supported

ExceptionCode = 04

Request Processing

Reference Address == OK

AND_Mask == OK
AND

OR_Mask == OK

Figure 20: Mask Write Holding Register state diagram

6.11 23 (0x17) Read/Write Multiple registers

This function code performs a combination of one read operation and one write operation in a single MODBUS transaction.
Holding registers are addressed starting at zero. Therefore holding registers 1-16 are addressed as 0-15.
The request specifies the starting address and number of holding registers to be read as well as the starting address, number of holding
registers, and the data to be written. The byte count specifies the number of bytes to follow in the write data field.
The normal response contains the data from the group of registers that were read. The byte count field specifies the quantity of bytes to
follow in the read data field.

Request PDU
Function code 1 Byte 0x17

MODBUS Application Protocol Specification MODBUS.ORG

modbus.org http://www.modbus.org/ 36/45
8May02

Read Starting Address 2 Bytes 0x0000 to 0xFFFF

Quantity to Read 2 Bytes 0x0001 to approx.0x0076

Write Starting Address 2 Bytes 0x0000 to 0xFFFF

Quantity to Write 2 Bytes 0x0001 to approx. 0X0076

Write Byte Count 1 Byte 2 x N*

Write Registers Value N* x 2 Bytes

*N = Quantity to Write

Response PDU
Function code 1 Byte 0x17

Byte Count 1 Byte 2 x N'*

Read Registers value N'* x 2 Bytes

*N' = Quantity to Read

Error
Error code 1 Byte 0x97

Exception code 1 Byte 01 or 02 or 03 or 04

Here is an example of a request to read six registers starting at register 4, and to write three registers starting at register 15:
Request Response

Field Name (Hex) Field Name (Hex)

Function 17 Function 17

Read Starting Address Hi 00 Byte Count 0C

Read Starting Address Lo 03 Read Registers value Hi 00

Quantity to Read Hi 00 Read Registers value Lo FE

Quantity to Read Lo 06 Read Registers value Hi 0A

Write Starting Address Hi 00 Read Registers value Lo CD

Write Starting address Lo 0E Read Registers value Hi 00

Quantity to Write Hi 00 Read Registers value Lo 01

Quantity to Write Lo 03 Read Registers value Hi 00

Write Byte Count 06 Read Registers value Lo 03

Write Registers Value Hi 00 Read Registers value Hi 00

Write Registers Value Lo FF Read Registers value Lo 0D

Write Registers Value Hi 00 Read Registers value Hi 00

Write Registers Value Lo FF Read Registers value Lo FF

Write Registers Value Hi 00

Write Registers Value Lo FF

MODBUS Application Protocol Specification MODBUS.ORG

modbus.org http://www.modbus.org/ 37/45
8May02

MB Server Sends mb_exception_rsp EXIT

MB Server receives mb_req_pdu

ExceptionCode = 01
YES

NO

NO

ExceptionCode = 02
YES

NO

ExceptionCode = 03
YES

ENTRY

Read/WriteMultipleRegisters == OK

MB Server Sends mb_rsp

NO

YES

0x0001 ≤ Quantity of Read ≤ 0x007D
AND

0x0001 ≤ Quantity of Write ≤ 0x0079
AND

Byte Count == Quantity of Write x 2

Function code
supported

 Read Starting Address == OK
AND

Read Starting Address + Quantity of Read == OK
AND

Write Starting Address == OK
AND

Write Starting Address + Quantity of Write == OK

ExceptionCode = 04

Request Processing

Figure 21: Read/Write Multiple Registers state diagram

MODBUS Application Protocol Specification MODBUS.ORG

modbus.org http://www.modbus.org/ 38/45
8May02

6.12 43 (0x2B) Read Device Identification

This function code allows reading the identification and additional information relative to the physical and functional description of a
remote device.
The Read Device Identification interface is modeled as an address space composed of a set of addressable data elements. The data
elements are called objects and an object Id identifies them.
The interface consists of 3 categories of objects :

§ Basic Device Identification. All objects of this category are mandatory : VendorName, Product code, and revision number.
§ Regular Device Identification. In addition to Basic data objects, the device provides additional and optional identification and

description data objects. All of the objects of this category are defined in the standard but their implementation is optional .
§ Extended Device Identification. In addition to regular data objects, the device provides additional and optional identification and

description private data. All of these data are device dependent.

Object
Id

Object Name / Description Type M/O category

0x00 VendorName ASCII String Mandatory

 0x01 ProductCode ASCII String Mandatory

0x02 MajorMinorRevision ASCII String Mandatory

Basic

0x03 VendorUrl ASCII String Optional

0x04 ProductName ASCII String Optional

0x05 ModelName ASCII String Optional

0x06 UserApplicationName ASCII String Optional

0x07
…

0x7F

Reserved Optional

Regular

0x80
…

0xFF

Private objects may be optionally defined

The range [0x80 – 0xFF] is Product dependant.

device
dependant

Optional Extended

Request PDU
Function code 1 Byte 0x2B

MEI Type 1 Byte 0x0E

Read Device ID code 1 Byte 01 / 02 / 03 / 04
Object Id 1 Byte 0x00 to 0xFF

Response PDU
Function code 1 Byte 0x2B

MEI Type 1 byte 0x0E

Read Device ID code 1 Byte 01 / 02 / 03 / 04
Conformity level 1 Byte

More Folows 1 Byte 00 / FF

Next Object Id 1 Byte Object ID number

Number of objects 1 Byte

List Of

Object ID 1 Byte

MODBUS Application Protocol Specification MODBUS.ORG

modbus.org http://www.modbus.org/ 39/45
8May02

Object length 1 Byte

Object Value 1 Byte

Error
Function code 1 Byte 0xAB :

Fc 0x2B + 0x80

MEI Type 1 Byte 14

Exception code 1 Byte 01, 02, 03, 04

Request parameters decsription :
A Modbus Encapsulated Interface assigned number 14 identifies the Read identification request. Four access types are defined :

01 : request to get the basic device identification (stream access)
02 : request to get the regular device identification (stream access)
03 : request to get the extended device identification (stream access)
04 : request to get one specific identification object (individual access)

In the case where the identification data does not fit into a single response, several request/response transactions may be required.
The Object Id byte gives the identification of the first object to obtain. For the first transaction, the client must set the Object Id to 0
to obtain the start of the device identification data. For the following transactions, the client must set the Object Id to the value
returned by the server in its previous response.
If the Object Id does not match any known object, the server responds as if object 0 were pointed out (restart at the beginning).
In case of an individual access: ReadDevId code 04, the Object Id in the request gives the identification of the object to obtain.
If the Object Id doesn't match to any known object, the server returns an exception response with exception code = 02 (Illegal data
address).

Response parameter description :
Function code : Function code 43 (decimal) 0x2B (hex)
MEI Type 14 (0x0E) MEI Type assigned number for Device Identification Interface
ReadDevId code : Same as request ReadDevId code : 01, 02, 03 or 04
Conformity Level Identification conformity level of the device and type of supported access

01 : basic identification (stream access only)
02 : regular identification (stream access only)
03 : extended identification (stream access only)
81 : basic identification (stream access and individual access)
82 : regular identification (stream access and individual access)
83 : extended identification (stream access and individual access)

More Follows In case of ReadDevId codes 01, 02 or 03 (stream access),
If the identification data doesn't fit into a single response, several request/response transactions may be
required.
00 : no more Object are available
FF : other identification Object are available and further Modbus transactions are required
In case of ReadDevId code 04 (individual access),
this field must be set to 00.

Next Object Id If "MoreFollows = FF", identification of the next Object to be asked for.
if "MoreFollows = 00", must be set to 00 (useless)

Number Of Objects Number of identification Object returned in the response
(for an individual access, Number Of Objects = 1)

Object0.Id Identification of the first Object returned in the PDU (stream access)
or the requested Object (individual access)

MODBUS Application Protocol Specification MODBUS.ORG

modbus.org http://www.modbus.org/ 40/45
8May02

Object0.Length Length of the first Object in byte
Object0.Value Value of the first Object (Object0.Length bytes)
…
ObjectN.Id Identification of the last Object (within the response)
ObjectN.Length Length of the last Object in byte
ObjectN.Value Value of the last Object (ObjectN.Length bytes)

Example of a Read Device Identification request for "Basic device identification" : In this example all information are sent in one
response PDU.

Request Response

Field Name Value Field Name Value

Function 2B Function 2B

 MEI Type 0E MEI Type 0E

Read Dev Id code 01 Read Dev Id Code 01

Object Id 00 Conformity Level 01

More Follows 00

NextObjectId 00

Number Of Objects 03

Object Id 00

Object Length 16

Object Value " Company identification"

Object Id 01

Object Length 0A

Object Value " Product code "

Object Id 02

Object Length 05

Object Value "V2.11"

In case of a device that required several transactions to send the response the following transactions is intiated.
First transaction :

Request Response

Field Name Value Field Name Value

Function 2B Function 2B

 MEI Type 0E MEI Type 0E

Read Dev Id code 01 Read Dev Id Code 01

Object Id 00 Conformity Level 01

More Follows FF

NextObjectId 02

Number Of Objects 03

Object Id 00

Object Length 16

Object Value " Company identification"

MODBUS Application Protocol Specification MODBUS.ORG

modbus.org http://www.modbus.org/ 41/45
8May02

Object Id 01

Object Length 1A

Object Value " Product code
XXXXXXXXXXXXXXXX"

Second transaction :

Request Response

Field Name Value Field Name Value

Function 2B Function 2B

 MEI Type 0E MEI Type 0E

Read Dev Id code 01 Read Dev Id Code 01

Object Id 02 Conformity Level 01

More Follows 00

NextObjectId 00

Number Of Objects 03

Object Id 02

Object Length 05

Object Value "V2.11"

MODBUS Application Protocol Specification MODBUS.ORG

modbus.org http://www.modbus.org/ 42/45
8May02

MB Server Sends
mb_exception_rsp EXIT

MB Server receives mb_req_pdu

ExceptionCode = 01
YES

NO

More follows = FF
Next Object ID = XX

NO

ExceptionCode = 02
YES

ENTRY

MB Server Sends mb_rsp

NO

Object Id OK

Function code
supported

Segmentation required

Request Processing

More follows = 00
Next Object ID = 00

Figure 22: Read Device Identification state diagram

MODBUS Application Protocol Specification MODBUS.ORG

modbus.org http://www.modbus.org/ 43/45
8May02

7 MODBUS Exception Responses

When a client device sends a request to a server device it expects a normal response. One of four possible events can occur from the
master’s query:

• If the server device receives the request without a communication error, and can handle the query normally, it returns a normal
response.

• If the server does not receive the request due to a communication error, no response is returned. The client program will eventually
process a timeout condition for the request.

• If the server receives the request, but detects a communication error (parity, LRC, CRC, ...), no response is returned. The client
program will eventually process a timeout condition for the request.

• If the server receives the request without a communication error, but cannot handle it (for example, if the request is to read a non–
existent output or register), the server will return an exception response informing the client of the nature of the error.

The exception response message has two fields that differentiate it from a normal response:

Function Code Field: In a normal response, the server echoes the function code of the original request in the function code field of the
response. All function codes have a most–significant bit (MSB) of 0 (their values are all below 80 hexadecimal). In an exception
response, the server sets the MSB of the function code to 1. This makes the function code value in an exception response exactly 80
hexadecimal higher than the value would be for a normal response.
With the function code’s MSB set, the client's application program can recognize the exception response and can examine the data field
for the exception code.

Data Field: In a normal response, the server may return data or statistics in the data field (any information that was requested in the
request). In an exception response, the server returns an exception code in the data field. This defines the server condition that caused
the exception.

Example of a client request and server exception response

Request Response

Field Name (Hex) Field Name (Hex)

Function 01 Function 81

Starting Address Hi 04 Exception Code 02

Starting Address Lo A1

Quantity of Outputs Hi 00

Quantity of Outputs Lo 01

In this example, the client addresses a request to server device. The function code (01) is for a Read Output Status operation. It
requests the status of the output at address 1245 (04A1 hex). Note that only that one output is to be read, as specified by the number of
outputs field (0001).
If the output address is non–existent in the server device, the server will return the exception response with the exception code shown
(02). This specifies an illegal data address for the slave.

A listing of exception codes begins on the next page.

MODBUS Application Protocol Specification MODBUS.ORG

modbus.org http://www.modbus.org/ 44/45
8May02

MODBUS Exception Codes

Code Name Meaning

01 ILLEGAL FUNCTION The function code received in the query is not an allowable
action for the server (or slave). This may be because the
function code is only applicable to newer devices, and was not
implemented in the unit selected. It could also indicate that the
server (or slave) is in the wrong state to process a request of
this type, for example because it is unconfigured and is being
asked to return register values.

02 ILLEGAL DATA ADDRESS The data address received in the query is not an allowable
address for the server (or slave). More specifically, the
combination of reference number and transfer length is
invalid. For a controller with 100 registers, a request with
offset 96 and length 4 would succeed, a request with offset 96
and length 5 will generate exception 02.

03 ILLEGAL DATA VALUE A value contained in the query data field is not an allowable
value for server (or slave). This indicates a fault in the
structure of the remainder of a complex request, such as that
the implied length is incorrect. It specifically does NOT mean
that a data item submitted for storage in a register has a value
outside the expectation of the application program, since the
MODBUS protocol is unaware of the significance of any
particular value of any particular register.

04 SLAVE DEVICE FAILURE An unrecoverable error occurred while the server (or slave)
was attempting to perform the requested action.

05 ACKNOWLEDGE Specialized use in conjunction with programming commands.
The server (or slave) has accepted the request and is
processing it, but a long duration of time will be required to do
so. This response is returned to prevent a timeout error from
occurring in the client (or master). The client (or master) can
next issue a Poll Program Complete message to determine if
processing is completed.

06 SLAVE DEVICE BUSY Specialized use in conjunction with programming commands.
The server (or slave) is engaged in processing a long–
duration program command. The client (or master) should
retransmit the message later when the server (or slave) is
free.

08 MEMORY PARITY ERROR Specialized use in conjunction with function codes 20 and 21
and reference type 6, to indicate that the extended file area
failed to pass a consistency check.
The server (or slave) attempted to read record file, but
detected a parity error in the memory. The client (or master)
can retry the request, but service may be required on the
server (or slave) device.

0A GATEWAY PATH UNAVAILABLE Specialized use in conjunction with gateways, indicates that
the gateway was unable to allocate an internal communication
path from the input port to the output port for processing the
request. Usually means that the gateway is misconfigured or
overloaded.

0B GATEWAY TARGET DEVICE
FAILED TO RESPOND

Specialized use in conjunction with gateways, indicates that
no response was obtained from the target device. Usually
means that the device is not present on the network.

MODBUS Application Protocol Specification MODBUS.ORG

modbus.org http://www.modbus.org/ 45/45
8May02

